RoboFlow 100 Document dataset Collection
rf100_document_collection(
dataset,
split = c("train", "test", "valid"),
transform = NULL,
target_transform = NULL,
download = FALSE
)
Dataset to select within c("tweeter_post", "tweeter_profile", "document_part",
"activity_diagram", "signature", "paper_part", "tabular_data", "paragraph")
.
the subset of the dataset to choose between c("train", "test", "valid")
.
Optional transform function applied to the image.
Optional transform function applied to the target.
Logical. If TRUE, downloads the dataset if not present at root
.
A torch dataset. Each element is a named list with:
x
: H x W x 3 array representing the image.
y
: a list containing the target with:
image_id
: numeric identifier of the x image.
labels
: numeric identifier of the N bounding-box object class.
boxes
: a torch_tensor of shape (N, 4) with bounding boxes, each in \((x_{min}, y_{min}, x_{max}, y_{max})\) format.
The returned item inherits the class image_with_bounding_box
so it can be
visualised with helper functions such as draw_bounding_boxes()
.
Loads one of the RoboFlow 100 Document datasets with COCO-style bounding box annotations for object detection tasks.
Other detection_dataset:
coco_detection_dataset()
,
pascal_voc_datasets
,
rf100_biology_collection()
,
rf100_damage_collection()
,
rf100_infrared_collection()
,
rf100_medical_collection()
,
rf100_underwater_collection()
if (FALSE) { # \dontrun{
ds <- rf100_document_collection(
dataset = "tweeter_post",
split = "train",
transform = transform_to_tensor,
download = TRUE
)
# Retrieve a sample and inspect annotations
item <- ds[1]
item$y$labels
item$y$boxes
# Draw bounding boxes and display the image
boxed_img <- draw_bounding_boxes(item)
tensor_image_browse(boxed_img)
} # }